summinmaxmedianmeancountdescribe
Check the official docs,
import pandas as pd
houses = pd.read_csv("data/kc_house_data.csv")
housesLoading...
Min, Max¶
houses.min()id 1000102
date 20140502T000000
price 75000.0
bedrooms 0
bathrooms 0.0
sqft_living 290
sqft_lot 520
floors 1.0
waterfront 0
view 0
condition 1
grade 1
sqft_above 290
sqft_basement 0
yr_built 1900
yr_renovated 0
zipcode 98001
lat 47.1559
long -122.519
sqft_living15 399
sqft_lot15 651
dtype: objecthouses.max()id 9900000190
date 20150527T000000
price 7700000.0
bedrooms 33
bathrooms 8.0
sqft_living 13540
sqft_lot 1651359
floors 3.5
waterfront 1
view 4
condition 5
grade 13
sqft_above 9410
sqft_basement 4820
yr_built 2015
yr_renovated 2015
zipcode 98199
lat 47.7776
long -121.315
sqft_living15 6210
sqft_lot15 871200
dtype: objecttype(houses.max())pandas.core.series.SeriesSum¶
Official doc,
houses.sum()id 98994056770455
date 20141013T00000020141209T00000020150225T0000002...
price 11672925008.0
bedrooms 72854
bathrooms 45706.25
sqft_living 44952873
sqft_lot 326506890
floors 32296.5
waterfront 163
view 5064
condition 73688
grade 165488
sqft_above 38652488
sqft_basement 6300385
yr_built 42599334
yr_renovated 1824186
zipcode 2119758513
lat 1027915.4151
long -2641408.943
sqft_living15 42935359
sqft_lot15 275964632
dtype: objecthouses.sum(numeric_only=True)id 9.899406e+13
price 1.167293e+10
bedrooms 7.285400e+04
bathrooms 4.570625e+04
sqft_living 4.495287e+07
sqft_lot 3.265069e+08
floors 3.229650e+04
waterfront 1.630000e+02
view 5.064000e+03
condition 7.368800e+04
grade 1.654880e+05
sqft_above 3.865249e+07
sqft_basement 6.300385e+06
yr_built 4.259933e+07
yr_renovated 1.824186e+06
zipcode 2.119759e+09
lat 1.027915e+06
long -2.641409e+06
sqft_living15 4.293536e+07
sqft_lot15 2.759646e+08
dtype: float64titanic = pd.read_csv("data/titanic.csv")
titanic.head()Loading...
titanic.sum()pclass 3004
survived 500
name Allen, Miss. Elisabeth WaltonAllison, Master. ...
sex femalemalefemalemalefemalemalefemalemalefemale...
age 290.91672302548633953714718242680?245032363747...
sibsp 653
parch 504
ticket 2416011378111378111378111378119952135021120501...
fare 211.3375151.55151.55151.55151.5526.5577.958305...
cabin B5C22 C26C22 C26C22 C26C22 C26E12D7A36C101?C62...
embarked SSSSSSSSSCCCCSSSCCCCSSCCSCCCSSSCSSSCSSSCCCSCCS...
boat 211???310?D??496B??68A55548?778D?788?469???6D8...
body ???135?????22124??????????????148?????????????...
home.dest St Louis, MOMontreal, PQ / Chesterville, ONMon...
dtype: objecttitanic.sum(numeric_only=True)pclass 3004
survived 500
sibsp 653
parch 504
dtype: int64names = ['sumlev', 'region', 'division', 'state', 'name', 'census2010pop', 'estimatesbase2010', 'popestimate2010', 'popestimate2011', 'popestimate2012', 'popestimate2013', 'popestimate2014', 'popestimate2015', 'popestimate2016', 'popestimate2017', 'popestimate2018', 'popestimate2019', 'popestimate042020', 'popestimate2020']
state_pops = pd.read_csv("data/nst-est2020.csv", names=names, header=0)state_pops.tail(52).head(51).sum(numeric_only=True)sumlev 2040
state 1477
census2010pop 308745538
estimatesbase2010 308758105
popestimate2010 309327143
popestimate2011 311583481
popestimate2012 313877662
popestimate2013 316059947
popestimate2014 318386329
popestimate2015 320738994
popestimate2016 323071755
popestimate2017 325122128
popestimate2018 326838199
popestimate2019 328329953
popestimate042020 329398742
popestimate2020 329484123
dtype: int64netflix = pd.read_csv("data/netflix_titles.csv", sep="|", index_col=0)netflix.head()Loading...
netflix.count()show_id 8807
type 8807
title 8807
director 6173
cast 7982
country 7976
date_added 8797
release_year 8807
rating 8803
duration 8804
listed_in 8807
description 8807
dtype: int64Mean, median, mode¶
houses.mean(numeric_only=True)id 4.580302e+09
price 5.400881e+05
bedrooms 3.370842e+00
bathrooms 2.114757e+00
sqft_living 2.079900e+03
sqft_lot 1.510697e+04
floors 1.494309e+00
waterfront 7.541757e-03
view 2.343034e-01
condition 3.409430e+00
grade 7.656873e+00
sqft_above 1.788391e+03
sqft_basement 2.915090e+02
yr_built 1.971005e+03
yr_renovated 8.440226e+01
zipcode 9.807794e+04
lat 4.756005e+01
long -1.222139e+02
sqft_living15 1.986552e+03
sqft_lot15 1.276846e+04
dtype: float64titanic.mean(numeric_only=True)pclass 2.294882
survived 0.381971
sibsp 0.498854
parch 0.385027
dtype: float64houses.median(numeric_only=True)id 3.904930e+09
price 4.500000e+05
bedrooms 3.000000e+00
bathrooms 2.250000e+00
sqft_living 1.910000e+03
sqft_lot 7.618000e+03
floors 1.500000e+00
waterfront 0.000000e+00
view 0.000000e+00
condition 3.000000e+00
grade 7.000000e+00
sqft_above 1.560000e+03
sqft_basement 0.000000e+00
yr_built 1.975000e+03
yr_renovated 0.000000e+00
zipcode 9.806500e+04
lat 4.757180e+01
long -1.222300e+02
sqft_living15 1.840000e+03
sqft_lot15 7.620000e+03
dtype: float64titanic.median(numeric_only=True)pclass 3.0
survived 0.0
sibsp 0.0
parch 0.0
dtype: float64titanic.mode(numeric_only=True)Loading...
Describe¶
titanic.describe()Loading...
houses.describe()Loading...
titanic.info()<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 pclass 1309 non-null int64
1 survived 1309 non-null int64
2 name 1309 non-null object
3 sex 1309 non-null object
4 age 1309 non-null object
5 sibsp 1309 non-null int64
6 parch 1309 non-null int64
7 ticket 1309 non-null object
8 fare 1309 non-null object
9 cabin 1309 non-null object
10 embarked 1309 non-null object
11 boat 1309 non-null object
12 body 1309 non-null object
13 home.dest 1309 non-null object
dtypes: int64(4), object(10)
memory usage: 143.3+ KB
titanic.describe(include=["object"])Loading...
titanic.describe(include=["O"]) # another way to write "object"Loading...