Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Adding & Removing Columns

import pandas as pd
houses = pd.read_csv("data/kc_house_data.csv")
titanic = pd.read_csv("data/titanic.csv")
netflix = pd.read_csv("data/netflix_titles.csv", sep="|", index_col=0)
btc = pd.read_csv("data/coin_Bitcoin.csv")
countries = pd.read_csv("data/world-happiness-report-2021.csv")
countries.set_index("Country name", inplace=True)

Dropping Rows/Cols

btc.drop(labels="Symbol", axis=1)
# use inplace=True for persisting 
Loading...
btc
Loading...
btc.drop(labels=["SNo", "Name", "Symbol"], axis='columns')
Loading...
# btc.drop(labels=["SNo", "Name", "Symbol"], axis='columns')
btc.drop(columns=["SNo", "Name", "Symbol"])
Loading...
btc[["Date", "High", "Low"]] # Here we are selecting not deleting
Loading...
btc.drop(columns=["SNo", "Name", "Symbol"], inplace=True)
btc
Loading...
countries
Loading...
countries.drop(labels="Denmark", axis=0)
Loading...
countries
Loading...
countries.drop(["Denmark", "Iceland", "Finland"])
Loading...
btc.sort_index(ascending=False, inplace=True)
btc.drop(2990)
Loading...
countries
Loading...
countries.drop(countries.index[0])
Loading...
countries.drop(countries.index[10:])
Loading...

Adding Columns

titanic["species"] = "human"
titanic
Loading...
houses.insert(0, "county", "King County")
houses
Loading...
houses["sale_price"] = houses["price"]
houses
Loading...
houses.insert(3, "num_bedrooms", houses["bedrooms"])
houses
Loading...
titanic.drop(columns=["species"], inplace=True)
titanic["sibsp"]
0 0 1 1 2 1 3 1 4 1 .. 1304 1 1305 1 1306 0 1307 0 1308 0 Name: sibsp, Length: 1309, dtype: int64
titanic["parch"]
0 0 1 2 2 2 3 2 4 2 .. 1304 0 1305 0 1306 0 1307 0 1308 0 Name: parch, Length: 1309, dtype: int64
titanic["sibsp"] + titanic["parch"]
0 0 1 3 2 3 3 3 4 3 .. 1304 1 1305 1 1306 0 1307 0 1308 0 Length: 1309, dtype: int64
titanic["num_relatives"] = titanic["sibsp"] + titanic["parch"]
titanic
Loading...
titanic.sort_values("num_relatives", ascending=False)
Loading...
titanic[titanic["survived"] == 1].sort_values("num_relatives", ascending=False)
Loading...
solo_passengers = titanic["num_relatives"] == 0
titanic[solo_passengers].sex.value_counts().plot(kind="pie")
<Axes: ylabel='count'>
<Figure size 640x480 with 1 Axes>
titanic.sex.value_counts().plot(kind="pie")
<Axes: ylabel='count'>
<Figure size 640x480 with 1 Axes>
houses["price_sqft"] = houses["price"] / houses["sqft_living"]
houses
Loading...
houses.sort_values("price_sqft", ascending=False)
Loading...
houses.sort_values("price_sqft", ascending=False).head(50)["zipcode"].value_counts().plot(kind="bar")
<Axes: xlabel='zipcode'>
<Figure size 640x480 with 1 Axes>
btc.set_index("Date")
Loading...
btc["change"] = btc["Close"] - btc["Open"]
btc.sort_values("change", ascending=False)
Loading...
btc["delta"] = btc["High"] - btc["Low"]
btc.sort_values("delta", ascending=False)
Loading...
btc.set_index("Date", inplace=True)
btc.sort_values("delta", ascending=False).head(10)["delta"].plot(kind="bar")
<Axes: xlabel='Date'>
<Figure size 640x480 with 1 Axes>