import pandas as pd
houses = pd.read_csv("data/kc_house_data.csv")
titanic = pd.read_csv("data/titanic.csv")
netflix = pd.read_csv("data/netflix_titles.csv", sep="|", index_col=0)
btc = pd.read_csv("data/coin_Bitcoin.csv")
countries = pd.read_csv("data/world-happiness-report-2021.csv")countries.set_index("Country name", inplace=True)Dropping Rows/Cols¶
btc.drop(labels="Symbol", axis=1)
# use inplace=True for persisting Loading...
btcLoading...
btc.drop(labels=["SNo", "Name", "Symbol"], axis='columns')Loading...
# btc.drop(labels=["SNo", "Name", "Symbol"], axis='columns')
btc.drop(columns=["SNo", "Name", "Symbol"])Loading...
btc[["Date", "High", "Low"]] # Here we are selecting not deletingLoading...
btc.drop(columns=["SNo", "Name", "Symbol"], inplace=True)btcLoading...
countriesLoading...
countries.drop(labels="Denmark", axis=0)Loading...
countriesLoading...
countries.drop(["Denmark", "Iceland", "Finland"])Loading...
btc.sort_index(ascending=False, inplace=True)
btc.drop(2990)Loading...
countriesLoading...
countries.drop(countries.index[0])Loading...
countries.drop(countries.index[10:])Loading...
Adding Columns¶
titanic["species"] = "human"
titanicLoading...
houses.insert(0, "county", "King County")housesLoading...
houses["sale_price"] = houses["price"]housesLoading...
houses.insert(3, "num_bedrooms", houses["bedrooms"])housesLoading...
titanic.drop(columns=["species"], inplace=True)titanic["sibsp"]0 0
1 1
2 1
3 1
4 1
..
1304 1
1305 1
1306 0
1307 0
1308 0
Name: sibsp, Length: 1309, dtype: int64titanic["parch"]0 0
1 2
2 2
3 2
4 2
..
1304 0
1305 0
1306 0
1307 0
1308 0
Name: parch, Length: 1309, dtype: int64titanic["sibsp"] + titanic["parch"]0 0
1 3
2 3
3 3
4 3
..
1304 1
1305 1
1306 0
1307 0
1308 0
Length: 1309, dtype: int64titanic["num_relatives"] = titanic["sibsp"] + titanic["parch"]titanicLoading...
titanic.sort_values("num_relatives", ascending=False)Loading...
titanic[titanic["survived"] == 1].sort_values("num_relatives", ascending=False)Loading...
solo_passengers = titanic["num_relatives"] == 0
titanic[solo_passengers].sex.value_counts().plot(kind="pie")<Axes: ylabel='count'>
titanic.sex.value_counts().plot(kind="pie")<Axes: ylabel='count'>
houses["price_sqft"] = houses["price"] / houses["sqft_living"]housesLoading...
houses.sort_values("price_sqft", ascending=False)Loading...
houses.sort_values("price_sqft", ascending=False).head(50)["zipcode"].value_counts().plot(kind="bar")<Axes: xlabel='zipcode'>
btc.set_index("Date")Loading...
btc["change"] = btc["Close"] - btc["Open"]btc.sort_values("change", ascending=False)Loading...
btc["delta"] = btc["High"] - btc["Low"]btc.sort_values("delta", ascending=False)Loading...
btc.set_index("Date", inplace=True)btc.sort_values("delta", ascending=False).head(10)["delta"].plot(kind="bar")<Axes: xlabel='Date'>